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Abstract

One effect of strong mechanical high-frequency excitation may be to apparently ‘‘stiffen’’ a structure, a
well-described phenomenon for discrete systems. The present study provides theoretical and experimental
results on this effect for continuous elastic structures. A laboratory experiment is set up for demonstrating
and measuring the stiffening effect in a simple setting, in the form of a horizontal piano string subjected to
longitudinal high-frequency excitation at the clamped base and free at the other end. A simplest possible
theoretical model is set up and analyzed using a hierarchy of three approximating theories, each providing
valuable insight. One of these is capable of predicting the vertical string lift due to stiffening in terms of
simple expressions, with results that agree very well with experimental measurements for a wide range of
conditions. It appears that resonance effects cannot be ignored, as was done in a few related studies—unless
the system has very low modal density or heavy damping; thus first-order consideration to resonance effects
is included. Using the specific example with experimental support to put confidence on the proposed theory,
expressions for predicting the stiffening effect for a more general class of continuous systems in differential
operator form are also provided.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

This work concerns setting up and testing analytical expressions for the stiffening effect of
strong high-frequency (HF) excitation for continuous elastic systems. This involves presenting the
phenomenon in a simple physical setting, setting up a laboratory experiment that allows visual
demonstration and accurate measurements, providing a simplest possible theory that correlates
well with experiments, and generalizing that theory to a wider class of elastic systems. The study is
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believed to be the first providing experimental results and theoretical predictions that agree
quantitatively on the stiffening effect for a continuous elastic system.
The laboratory experiment involves a clamped-free piano string, horizontally aligned and

subjected to longitudinal high-frequency excitation at the clamped end. Gravity causes the string
to bend downwards, while the HF excitation generally causes it to stiffen and thus to straighten
somewhat. Measuring the lift of the string then quantifies the stiffening effect. A simple linear
beam model is set up, and analyzed using three theories: A simple one giving insight but poor
accuracy, a detailed one giving good accuracy but little insight, and a compromise capable of
predicting the average tip lift in good quantitative agreement with experimental results for a wide
range of conditions, except at sharp resonance. It appears that resonance effects cannot be
ignored, as was done in the few related studies, since the modal density is high and damping is
weak: Even the flattest parts of the frequency response is affected by neighboring resonances.
Thus the theoretical predictions include first-order consideration to resonance effects. Using the
specific example with experimental support to put confidence on the proposed theory, expressions
for predicting the stiffening effect for a more general class of continuous systems in differential
operator form are also provided and exemplified.
Several non-trivial effects of strong HF excitation has been described, e.g., in Refs. [1–5],

among them the stiffening effect of present concern. One well-known manifestation of it is the
stabilization of the upper equilibrium position of a pendulum on a rapidly vibrating support, as
described already by Stephenson [6,7], Hirsch [8], and Kapitza [9]. Similar effects may occur for
systems with multiple degrees of freedom, e.g., double- or n-link pendulums [1,10–14], and as well
for continuous structures such as strings, rods, beams, membranes, plates and shells.
For continuous systems Chelomei, in a popular exposition [15], demonstrated experimentally

how HF axial excitation could increase the buckling stability of a pinned–pinned column. The
change of stability can be seen as a consequence of a change in effective stiffness, i.e., stiffness ‘‘on
the average’’, as predicted much earlier by Chelomei [16] using a simple linear model. Later Jensen
[17] presented an extended theoretical model of this system, paying consideration to non-linear
effects and imperfections, and provided a thorough analysis of how equilibriums of the column
emerge and disappear and changes stability as parameters of the HF excitation is varied. In Ref.
[18] the theoretical predictions were supplied with predictions for the corresponding change in
effective natural frequencies; these were tested experimentally, giving reasonable agreement at
least qualitatively. However, there were also significant discrepancies, and it was not clear which
unmodelled features should be included in the theory to reduce these.
Other investigations with experimental support seem rare: Feuer and Levine [10] studied the

stabilizing effect of applying HF excitation to a clamped–free flexible beam; the beam was
modelled as an n-link mechanism, and laboratory experiments with a 2-link beam showed a clear
stiffening effect of the excitation. Also, Champneys and Fraser [19,20] presented a theoretical and
numerical analysis of the stabilizing effect of HF excitation for a vertical clamped–free beam (a
phenomenon that Ref. [21] refers to as ‘‘not quite the Indian rope trick’’). The motivation of the
study was to explain experiments performed by Mullin and described in Ref. [21] using pieces of
curtain wire (see also Refs. [12,22]); however, the authors concluded that close quantitative
agreement between theory and experiment could not be found.
Previous theoretical predictions for the stiffening effect assumes strictly non-resonant

excitation: Tcherniak [23] analyzed a pinned–pinned beam, and showed how a combination of

J.J. Thomsen / Journal of Sound and Vibration 260 (2003) 117–139118



axial point loads and distributed loads of high frequency may be used to change natural
frequencies and mode shapes of the beam. The assumption of non-resonant excitation is shown to
be theoretically fulfilled if the damping is internal (i.e., is proportional to the rate of change of
bending moment). Then all modes above a certain frequency are over-damped, and excitations
above this frequency cannot excite (first-order) resonances. Also, Hansen [24] used theoretical and
numerical analysis to predict an increase of the natural frequencies of a spinning flexible disk
subject to a small but rapid pulsating overlay in rotation speed. Again the analysis assumes the
pulsating overlay to be non-resonant to the disk system, and the agreement with numerical
analysis is good only when this is fulfilled. Also Zak [25], considering general elastic continua in
HF excitation fields, showed that stiffening occurs in the direction of the wave vector and
provided expressions for the effective Young’s modulus, again with resonance effects neglected.
The present study attempts to set up a laboratory experiment for illustrating and measuring the

phenomenon for a simple string case (Section 2), set up approximate analytical expressions for
predicting measurable quantities of the phenomena for that case with good accuracy (Section 3),
test these expressions against numerical simulation and experimental measurements (Section 4),
and on that basis suggest similar theoretical expressions for a generalized class of HF excited
elastic systems of differential operator form (Section 4).

2. Example system: flexible beam with HF base excitation

2.1. The system and the phenomenon

The prime phenomenon under consideration is the apparent change in stiffness that may
accompany strong HF excitation. This change in turn affects measurable quantities such as
deformations under static and dynamic loading, natural frequencies, and buckling stability.
Deformation is chosen as the quantity to be measured experimentally and predicted theoretically,
since it can be measured rather easily (by contrast to buckling stability) and even be judged
visually (as opposed to natural frequencies).
Fig. 1 shows a doubly exposed photo of a thin horizontal piano string exposed to gravity (lower

string image), and to additional horizontal base vibrations having small displacement amplitude,
but high frequency and thus significant acceleration amplitude (upper image). As is evident, the
exciting vibrations cause the string to vibrate transversely (image slightly blurred), and to lift off
noticeably from the static equilibrium. Filtering or averaging out the small overlay of HF
excitation, an observer perceives the lift as an increase in the bending stiffness of the string, since
there is no change in (average) external loading.
The string in Fig. 1 was used only for visual demonstrations. To better utilize the measurement

range of the available equipment, a much stiffer string showing consequently smaller
deformations was used for recorded measurements, as described next.

2.2. Experimental setup and procedure

All recorded measurements were obtained for a 1mm diameter piano string of length 550mm,
density 7819 kg/m (weight and dimensions measured), Young’s modulus 195GPa (estimated by
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fitting to six lowest measured natural frequencies, as obtained using measured frequency
responses from pseudo-random excitation and B&K PULSE software), and lowest natural
frequencies and estimated modal damping as given in Table 1.
Fig. 2 sketches the setup. The string was horizontally clamped by a rigid stud to a horizontally

aligned vibration exciter. The exciter delivers vibrations of adjustable acceleration amplitude and
frequency, quantities that were measured using an accelerometer mounted at the shaker base.
Motions of the string tip were measured using an optical displacement follower that automatically
tracks vertical movements of a horizontal black/white contrast on a small piece of paper glued to
the tip. For the actual setup the accuracy of tracker readings was better than 0.1mm within the
measurement range 0–10mm. The tracker output signal was fed to a digital signal analyzer, where
it could be displayed, recorded, and analyzed along with the accelerometer signal from the shaker,
in the time or frequency domain.
Calibration of the setup was performed before each measurement series, using a dedicated

calibrator for the accelerometer, and a micrometer for the optical tracker. The tracker offset was
then adjusted to produce zero output with the string in static equilibrium. The latter part of the
calibration was repeated after any event that could permanently disturb the static equilibrium,

Fig. 1. String +0.5� 500mm excited by horizontal vibrations at the base. Two images overlaid: One with gravity as

the only excitation (lower string image), and one with the base vibrating at 62Hz and 3.3mm displacement, 500m/s2

acceleration amplitude (upper image). The string tip is seen to lift about 2 cm. Camera shutter speed was 1
50
s, so the

blurred image of the upper string reflects positions traced during a little more than a full vibration cycle.

Table 1

Measured natural frequencies fi; damping ratios zi; and relative deviation between measured and theoretically predicted

(Bernoulli–Euler) natural frequencies Dfi=fi for the +1� 550mm clamped-free piano string

i 1 2 3 4 5 6

fi (Hz) 2.4 14.6 40.4 79.1 131.0 195.6

zi (%) 4.5 0.3 0.3 0.06 0.05 0.05

Dfi=fi (%) 3.9 0.9 �0.3 �0.4 �0.21 �0.3
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e.g., after violent resonant vibrations. Good reproducibility was observed for all measurements
and phenomena. Only stationary outputs were recorded, requiring typically 1/2–2min of waiting
for transients of this lightly damped system to decay to an acceptable level.
Fig. 3 shows a typical time series record, along with definitions of quantities that will be

referred to in the following: The acceleration amplitude Oa; the stationary mean tip lift Du�
0ðlÞ; and

the tip amplitude *u�ðlÞ: As appears the string oscillates in synchrony with the excitation, in this case
with a tip lift of about 1.2mm and amplitude of about 0.4mm. Analyzing such time series as the
two control parameters (base frequency O and acceleration Oa) are varied quasi-statically, one
obtains data for frequency response or acceleration response diagrams, as will be presented in
Section 4.

3. Theoretical model and predictions

The aim here is to set up the simplest possible model capable of reproducing the experimental
observations with good accuracy. The model is then analyzed using a hierarchy of three theories:
A simple one giving insight but poor accuracy, a more detailed one giving good accuracy but little
insight, and a third that is believed to represent a good compromise.
Fig. 4 shows a physical model of the string system: a clamped–free beam of free length l; with

constant mass per unit length rA and bending stiffness EI : The beam vibrates in a vertical plane
with instant configuration uðx; tÞ; in response to external forces from gravity g and time-harmonic

Fig. 2. Experimental setup for measuring base acceleration, base frequency, and tip lift for a clamped-free piano string.
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base excitation. The base excitation has velocity amplitude a and high frequency O; so that the
displacement amplitude O�1a is small, while the acceleration Oa is strong. We shall keep referring
to the experimental string and the corresponding theoretical beam model, the latter taking into
account the finite bending stiffness of the piano string.
The linearized partial differential equation governing small motions of the beam is obtained by

using Newton’s second law to express dynamic equilibrium for a differential element of the beam,
and employing the usual Bernoulli–Euler assumptions (e.g., see Ref. [26] or most textbooks on
basic vibration theory), which yields

utt þ cut þ o2
0l

4uxxxx � ððl � xÞuxÞxOa sinðOtÞ ¼ �g; ð1Þ

uð0; tÞ ¼ uxð0; tÞ ¼ uxxðl; tÞ ¼ uxxxðl; tÞ ¼ 0; ð2Þ

where subscripts x and t denote partial derivatives with respect to space and time, viscous
damping with constant coefficient c has been assumed, the quantity ðl2xÞuxOa sinðOtÞ represents
the bending moment per unit length and mass exerted by the moving-base induced inertia forces,

(a)

(b)

Fig. 3. Sample experimental record of (a) base acceleration and (b) corresponding tip lift for the +1� 550mm string

subjected to 300m/s2 base excitation at 60Hz.

Fig. 4. Physical model of the base excited string.
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and o0 is a characteristic frequency:

o2
0 �

EI

rAl4
: ð3Þ

Below predictions are made for the vertical lift of the beam tip due to HF excitation, since this
quantity reflects the stiffening effect, and can easily be observed and measured experimentally.
Three predictions will be given, each having particular advantages and drawbacks: The no-
resonance prediction (NRP), the simulated resonance prediction (SRP), and the analytical resonance

prediction (ARP).

3.1. The NRP

This approach is suitable only when the HF excitation is far-from-resonant to the string system,
and it cannot easily be generalized to other systems. However, working directly with the partial
differential equation of motion, it avoids the errors introduced by discretization, and further
reveals quite clearly how the HF excitation effectively corresponds to a spatially varying stiffness
distribution.
To analyze Eq. (1) for Ob1 it is convenient to use the method of direct separation of motions,

developed by Blekhman [1] and recently applied for a number of related cases (e.g., Refs.
[2,4,5,11]). In this one introduces a fast time t as a new independent variable, and split the
unknown solution into slow and fast components as follows:

uðx; tÞ ¼ u0ðx; tÞ þ O�1u1ðx; t; tÞ; t � Ot; Ob1: ð4Þ

Here u0 holds the ‘slow’ or average motions, and O�1u1 is a rapidly oscillating overlay that has
small amplitude, is 2p-periodic in the fast-time t; and has zero fast-time average:

/u1ðx; t; tÞS �
1

2p

Z 2p

0

u1ðx; t; tÞ dt ¼ 0; ð5Þ

where the slow time t should be considered constant during the (comparably short) time interval
of integration. Time derivatives of u transform into partial derivatives with respect to t and t as
follows:

ut ¼ u0t þ u1t þ O�1u1t; utt ¼ Ou1tt þ u0tt þ 2u1tt þ O�1u1tt: ð6Þ

Inserting this and Eq. (4) into Eq. (1) and averaging the result in the sense defined by Eq. (5), one
obtains an equation governing the slow motions u0:

u0tt þ cu0t þ o2
0l

4u0xxxx � aððl � xÞ/u1x sin tSÞx ¼ �g; ð7Þ

which is similar to Eq. (1) for u (and with identical boundary conditions), though, with the rapidly
oscillating term in Eq. (1) replaced by a term representing its effect on u0; on the average.
To obtain an equation for the fast components u1; one subtracts Eq. (7) from Eq. (1) (with

Eqs. (4) and (6) inserted), rearranges, and finds

u1tt ¼ aððl � xÞu0xÞx sin tþOðO�1Þ; ð8Þ

where OðO�1Þ represents terms of magnitude order O�1 and less. A first-order approximate
solution for the high-frequency range is thus readily obtained by integration, recalling that u0 does
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not depend on t; and using condition (5) to eliminate the constants of integration:

u1 ¼ �aððl � xÞu0xÞx sin tþOðO�1Þ; ð9Þ

This is the inertial approximation [1], which neglects any resonant effects of the excitation, if
present, and do not generally satisfy the boundary conditions. Despite these deficiencies the
inertial approximations has proven useful in a number of applications, since only its integrated
effect on u0; on the average, is of importance. Inserting into Eq. (7) and evaluating the averaging
term yields

u0tt þ cu0t þ o2
0l

4u0xxxx þ 1
2
a2ððl � xÞððl � xÞu0xÞxxÞx þOðO�1Þ ¼ �g; ð10Þ

which can be rearranged into the following form:

u0tt þ cu0t þ ð %o2
0ðxÞl

4u0xxÞxx þOðO�1Þ ¼ �g; ð11Þ

%o2
0ðxÞ � o2

0 þ
1
2
ða=lÞ2ð1� ðx=lÞÞ2: ð12Þ

Here %o2
0ðxÞ is seen to represent a distribution of effective bending stiffness (per unit mass) along

the string. It is composed of a first term describing the structural or ‘‘real’’ stiffness of the string,
and another one equivalencing the average effect of the HF excitation; this part drops of
quadratically with x towards the string tip. To an observer filtering out the small overlay of HF
excitation, the additional apparent stiffness caused by the HF excitation cannot be distinguished
from real structural stiffness with the equivalencing distribution.
Stationary solutions u�

0ðxÞ to the equation of slow motions are found by letting the time-
dependent terms in Eq. (11) vanish, and integrating four times to solve the resulting ordinary
differential equation for u0; subject to the boundary conditions (2); this yields

u�
0ðxÞ � lim

t-N

u0 ¼

�g

4o2
0

m�2ðx=lÞ2 þ 2m�3ð1� x=lÞðarctanðmÞ � arctanðmð1� x=lÞÞÞ
�

þm�4 ln
1þ m2ð1� x=lÞ2

1þ m2

� ��
þOðO�1Þ for ma0; Obo0;

�g

24o2
0

½ð1� x=lÞ4 þ 4x=l � 1
 for m ¼ 0;

8>>>>>>><
>>>>>>>:

ð13Þ

where m is a non-dimensional measure for the velocity amplitude a of the HF excitation:

m � a=ð
ffiffiffi
2

p
o0lÞ: ð14Þ

The HF excitation changes the (quasi-)equilibrium position of the string, since the stiffness is
effectively changed while the loading is not. At x ¼ l this change, which we shall call the tip lift, is

Du�0ðlÞNRP � u�
0ðlÞ

��
ma0

�u�
0ðlÞ

��
m¼0

¼
g

8o2
0

½1� 2m�2ð1� m�2 lnð1þ m2ÞÞ
 þOðO�1Þ ð15Þ

while the vibration amplitude at this point, the tip amplitude, by Eqs. (4),(9) and (13) becomes

*u�ðlÞNRP � maxðO�1u�
1Þ ¼

O�1gð1� m�1 arctanðmÞÞffiffiffi
2

p
mo0

þOðO�2Þ; ð16Þ
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where asterisks here and below are used to indicate stationary quantities, and the subscript NRP
refers to the no-resonance prediction. In a later section we compare results of the NRP to
experimental results and to other predictions.
The bracketed term in Eq. (15) equals the ratio of tip lift (in gravity and HF excitation) to the

static tip dip (due to gravity alone). As m-N this term approaches unity monotonically from
zero, so that the effect of gravity becomes negligible and the string tip lines up with its base. To lift
the tip one-tenth of the static dip in gravity requires mE0:41; while a lift of one half the static dip
requires mE1:3; according to this model.
The NRP in this case provides direct insight into the stiffening effect of HF excitation.

However, it is useful only when resonant effect do not occur, as e.g., when the frequency of
excitation is in a range where the modal density of the system is very low, or in a range where all
modes are over-damped (as with significant internal damping [23]). For the particular string
problem it is possible to include first-order consideration to resonant effects, by including the term
O�2o2

0l
4u1xxxx on the left side of Eq. (8) when solving approximately for u1; this solution will even

satisfy the boundary conditions. However, the final expressions become too complex to provide
any meaningful insight, and the approach cannot be generalized very far beyond the present
example.

3.2. The SRP

This approach gives results that turn out to match experimental measurements very well, even
when the HF excitation is close-to-resonant of the string system. Hence it is used to show that the
original model (1)–(2) includes the physical features of primary importance. However, since
numerical simulation is required to produce specific predictions for the tip lift, it provides almost
no insight into to the principal effect of the HF excitation.
The original partial differential equation of motion (1)–(2) can be solved numerically using e.g.,

finite element, finite difference, or Galerkin discretization. We use the latter here, since it operates
in terms of measurable and interpretable quantities such as natural frequencies and mode shapes,
and since the response can be adequately modelled using just a few discretizing functions. Let a
solution to Eqs. (1) and (2) be expressed in a series:

uðx; tÞ ¼
Xn

i¼1

viðtÞjiðxÞ; ð17Þ

where vi are unknown time functions, and ji are the eigenfunctions for a clamped–free beam:

jiðxÞ ¼ cosh li
x

l

� �
� cos li

x

l

� �
�

ðcoshðliÞ þ cosðliÞÞ
ðsinhðliÞ þ sinðliÞÞ

sinh li
x

l

� �
� sin li

x

l

� �� �
; ð18Þ

which satisfy the eigenvalue problem jxxxx ¼ ðl=lÞ4j with boundary conditions as given for u in
Eq. (2). Here l is a solution of the frequency equation cosðlÞcoshðlÞ þ 1 ¼ 0 (e.g., Ref. [26, pp.
61–9], for which the first six approximations are [1.8751041, 4.6940911, 7.8547574, 10.995541,
14.137168, 17.278760]; for iX6 the deviation from the asymptotic value li-ð2i21Þp=2 is less
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than 10�7. The corresponding natural frequencies are

oi ¼
li

l

� �2
ffiffiffiffiffiffiffi
EI

rA

s
¼ l2i o0: ð19Þ

To perform the Galerkin discretization Eq. (17) is inserted into Eq. (1), multiplied by jj;
integrated over the beam length, integration by parts employed, the orthogonality properties of j
exploited, and a set of n ordinary differential equations obtained for the modal coefficients viðtÞ:

vitt þ cvit þ o2
i vi þ

Xn

j¼1

gijvjOa sinðOtÞ ¼ �big; i ¼ 1; n; ð20Þ

where the modal constants are calculated as follows:

ai �
Z l

0

j2
i dx; bi � a�1

i

Z l

0

ji dx; gij � a�1
i

Z l

0

ðl � xÞjixjjx dx: ð21Þ

Eq. (20) can be reposed as a set of 2n first order differential equations, and solved for t > 0 for
specific initial conditions and parameters (c;oi;O; a) by using standard software (DIVPAG from
the IMSL Math/Library was used, with an option set to use Gear’s BDF method for stiff
systems).
Let v�i ðtÞ denote a specific stationary solution to Eq. (20), i.e., a numerical solution with initial

transients discarded. Then the tip lift becomes, by Eqs. (17) and (20),

Du�0ðlÞSRP � ðt2 � t1Þ
�1

Z t2

t1

u�ðl; tÞ
��
aa0

dt � u�ðl; tÞ
��
a¼0

¼ ðt2 � t1Þ
�1

Xn

i¼1

Z t2

t1

v�i ðtÞ dt jiðlÞ þ g
Xn

i¼1

bio
�2
i jiðlÞ; ð22Þ

where the averaging integration is performed numerically for the numerical solution v�i over a
suitable post-transient time interval [t1; t2]. The tip amplitude becomes, by Eq. (17),

*u�ðlÞSRP �
1

2

Xn

i¼1

ð max
tA½t1;t2


ðv�i Þ � min
tA½t1;t2


ðv�i ÞÞjiðlÞ; ð23Þ

where subscript SRP refers to the simulated resonance prediction. The accuracy of the numerical
solution increases with the number n of eigenfunctions included in the expansion. However, since
the response is typically dominated by lower modes, good accuracy can usually be attained by
including all modes having natural frequencies near to and lower than the frequency O of
excitation.

3.3. The ARP

The next approach provides analytical predictions in terms of simple functions of natural
frequencies and mode shapes. Combining the approaches for the NRP and the SRP described
above, it employs Galerkin discretization to obtain approximating ordinary differential equations,
which are then solved using the method of direct separation of motions. It provides predictions
almost as close to experimental observations as the SRP, except at sharp resonance. And yet it
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allows analytical insight and straightforward calculation. Most importantly, the approach can be
generalized for a wider class of elastic systems.
It should be stressed that we are concerned with small but rapid vibrations of the system, since

only then is it meaningful to consider the average vibration amplitude instead of the full motion.
This in turn implies that conditions of sharp resonance, with accompanying large amplitudes,
need not to be covered. But the theory should include consideration to weakly resonant motion,
i.e., motion influenced but not dominated by resonances in the vicinity of the excitation frequency;
otherwise the predictions will be essentially wrong, it will appear. So, first the conditions of strong
resonance are determined, and then the response analyzed aside from such conditions.

3.3.1. Resonances
System (1) and its discretized approximation (17) with Eq. (20) possesses both external and

parametric resonances. This is seen by introducing new variables *viðtÞ ¼ viðtÞ þ gbi=o
2
i ; measuring

the offset from the static equilibrium 2gbi=o
2
i ; by which Eq. (20) becomes

*vitt þ c*vit þ o2
i *vi þ

Xn

j¼1

gij *vjOa sinðOtÞ ¼
Xn

j¼1

ggijbjo
�2
j Oa sinðOtÞ; i ¼ 1; n: ð24Þ

The presence of external resonances at OEoi readily appears from the action of the harmonic
right-hand term on the linear stiffness term of the left side. As for parametric resonances caused
by the left-hand excitation term, the analysis of a similar system in Ref. [27] (Section 5.4) can be
directly employed. For the present case, where gij ¼ gji; it turns out that there are parametric
combination resonances of the summed type at OEoi þ oj; i; j ¼ 1; n; and that for weak damping
c the response is unbounded when OA½O1i;O2i
; where O1i is the lower of the following two values:

O1i;2i ¼
ðoi þ ojÞ
ð17kijÞ

7
c2

2kijðoi þ ojÞ
þOðc4Þ; kij �

agij

2
ffiffiffiffiffiffiffiffiffiffi
oioj

p ; i ¼ 1; n; j ¼ i; n; ð25Þ

where the two first terms is a good approximation for weak damping c: At external resonance the
response is limited by viscous damping, whereas at parametric resonance the model response
grows unbounded, since no limiting non-linearities are included here.

3.3.2. Non-resonant and weakly resonant response
As for the SRP the Galerkin discretized model is considered, i.e., the modal expansion (17) with

modal coefficients given by solutions to Eq. (20), which in matrix notation takes the form

vtt þ cvt þ x2vþ Oacv sinðOtÞ ¼ �gb; ð26Þ

where vðtÞ and b are n-vectors with components vi and bi; respectively, and c and x2 are (n � n)
matrices with components gij and dijoioj; respectively, where dij is Kronecker’s delta.
As with the NRP an attempt is made to solve the equations approximately for Ob1; i.e., again

the method of direct separation of motions is used, considering solutions for v of the form

v ¼ v0ðtÞ þ O�1v1ðt; tÞ; /v1S ¼ 0; t ¼ Ot; ð27Þ

where v0 holds the slow components, and O�1v1 is a rapidly oscillating overlay that has small
amplitude and zero fast-time average, and is 2p-periodic in the fast time t. Inserting this into
Eq. (26) and following the same procedure as described for the NRP in Section 3.1, one obtains
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the following equations for the slow motions v0 and the fast motions v1; respectively:

v0tt þ cv0t þ x2v0 þ ac/v1 sin tS ¼ �gb; ð28Þ

v1tt þ acv0 sin tþ O�1½2v1tt þ cv1t þ acðv1 sin t�/v1 sin tSÞ


þ O�2½v1tt þ cv1t þ x2v1
 ¼ 0: ð29Þ

Even if O is supposed to be large, there will typically be one or several elements in x2 that is close
to O or at least of similar order of magnitude. That is, the response to the excitation at most
frequencies O are significantly affected, though perhaps not dominated, by resonance effects.
Then jx2j ¼ OðO2Þ so that jO�2x2j ¼ Oð1Þ; and the last term in the last square bracket of Eq. (29)
is comparable in magnitude order to the dominating two first terms. For that case, which is typical
for real systems with a high modal density and low damping, Eq. (29) for the fast motions can be
written as

v1tt þ O�2x2v1 ¼ �acv0 sin tþOðO�1Þ: ð30Þ

To first order this is an undamped and uncoupled set of standard linear single-degree-of-freedom
harmonic oscillator equations, with the following stationary solution:

v1 ¼ aðI� O�2x2Þ�1cv0 sin tþOðO�1Þ; Oaoi; i ¼ 1; n; ð31Þ

where I is the identity matrix, and the condition that O be away from sharp resonance ensures the
matrix inverse to be finite. This expression for the fast motions is valid for weakly damped systems
at conditions that are not sharply resonant. Finitely small damping and sharp resonance can be
accounted for, if needed, by retaining the term O�1cv1t from Eqs. (29) to (30), at the cost of
increased complexity of subsequent expressions.
Inserting Eq. (31) into Eq. (28) and evaluating the averaging term, the equation for the slow

motions becomes

v0tt þ cv0t þ ðx2 þ Dx2Þv0 ¼ �gb; ð32Þ

where

Dx2 � 1
2a

2cðI� O�2x2Þ�1c: ð33Þ

Comparing Eq. (32) to Eq. (26), it appears that the equation of slow motions is similar to that of
the full motion, though with the rapidly oscillating term replaced by an apparent additional
stiffness (per unit mass) Dx2: Though, since Dx2 is generally non-diagonal, the n equations of
system (32) are coupled, by contrast to the equations for the unexcited system (26).
The stationary solution v�0 for the slow motions is obtained by neglecting the time-varying terms

and solving for v0; giving

v�0 ¼ lim
t-N

v0ðtÞ ¼ �gðx2 þ Dx2Þ�1b

¼ �gðx2 þ 1
2
a2cðI� O�2x2Þ�1cÞ�1b: ð34Þ

Inserting this and Eqs. (27) and (31) into expansion (17) (rewritten in matrix form, u ¼ vTu), and
averaging the result, it is found that the slow or averaged component of the deflection and the
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vibration amplitude is, respectively:

/uðx; tÞS ¼ ðv�0Þ
TuðxÞ;

maxðuðx; tÞ �/uðx; tÞSÞ ¼ aO�1ððI� O�2x2Þ�1cv�0Þ
TuðxÞ þOðO�2Þ: ð35Þ

Hence the tip lift and the tip amplitude is, respectively,

Du�
0ðlÞARP ¼ /uðl; tÞS�jaa0 � uðl; tÞ�ja¼0

¼ gbTððx2Þ�1 � ðx2 þ Dx2Þ�1ÞuðlÞ; ð36Þ

*u�ðlÞARP ¼ aO�1ððI� O�2x2Þ�1cv�0Þ
TuðlÞ þOðO�2Þ; ð37Þ

which is valid aside from sharp resonance, i.e., for Oaoi and Oe½O1i;O2i
; i ¼ 1; n:
Results identical to Eqs. (36) and (37) can be obtained by using second order standard

averaging, as was shown by Fidlin [28] after this paper was initially submitted. The averaging
approach seems more elaborate, but is also better substantiated mathematically.

4. Results: predictions and experiments compared

Here measured frequency and acceleration responses for the experimental string are presented,
and compared to theoretical predictions obtained by the NRP, the SRP, and the ARP.

4.1. Frequency response

Fig. 5 shows the tip lift and tip amplitude of the string, in response to HF excitation at fixed
acceleration amplitude Oa and varying frequency O; as measured for the experimental string, and
as predicted theoretically using the NRP, SRP, and ARP. As appears from Fig. 5(b) the modal
density is quite high, with four external resonances (smooth peaks) in this range (f3–f6, cf. Table
1), and a number of (sharp-edged) parametric resonances.
The analytical ARP (solid line) and the numerical SRP (dashed) results are almost

indistinguishable, except in frequency intervals of parametric resonance, where the ARP
expressions (36) and (37) are explicitly not valid. The prediction of these ranges, as given by
Eq. (25) and the horizontal arrow lines in Fig. 5(b), matches the SRP results with good accuracy
only up to about 130Hz; for higher frequencies second order approximations (quite lengthy) as
given in Ref. [27] may be necessary to improve on the accuracy. The important thing to note is
that, aside from sharp resonances, the simple analytical ARP with all its approximations, gives
results almost identical to the far more elaborate numerical SRP.
The experimental observations agree quite closely with the ARP (outside sharp resonance) and

the SRP. This indicates that the original model (1) captures all essential features for correct
quantitative prediction of the phenomenon under study, and also that the approximations
involved in using the SRP and in particular the ARP are pertinent.
By contrast the NRP, which assumes no resonant influence at all, provides results in reasonable

agreement with experimental results (and thus with the ARP and SRP) only for the very flattest
parts of the frequency response. Hence the NRP is useful only for very limited frequency ranges,
or for systems having very low modal density or high damping.
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Parametric resonances affect the response within well-defined intervals of O; whereas the
influence of external resonances disappears only gradually with the distance from resonance.
Some of the resonance regions are overlapping, e.g., the external resonance OEf4E79Hz is
within the region E76–87Hz where the parametric resonance OE2f3E81Hz causes unbounded
motion. There are also two minor resonance peaks, at 66 and 98Hz, closely corresponding to
f5=2E65:5Hz and f6=2Hz E98.1Hz. They occur in the numerical simulation as well as in
experiments, but neither resembles parametric nor external resonance—and since they occur for
the linear model they are not non-linear (super or subharmonic) resonances. Also note that for
excitation frequencies just below the primary external resonances, the tip lift is actually negative,
that is: the effective stiffness can also be lowered by HF excitation, so that for certain frequencies
the tip drops below its unexcited static equilibrium.

4.2. Acceleration response

Fig. 6 shows a set of acceleration responses, i.e., the tip lift as a function of base acceleration,
with the frequency kept constant at each of four values corresponding to the flatter parts of the

(a)

(b)

Fig. 5. Frequency response for the +1� 550mm horizontal string with horizontal base excitation of constant

acceleration amplitude Oa ¼ 300m/s2, showing (a) vertical tip lift and (b) tip vibration amplitude as a function of input

frequency. Circle symbols: experimental measurements (with arrows pointing up indicating large resonant response);

lines: theoretical predictions based on the NRP (dash–dotted), the SRP (dashed), and the ARP (solid line); horizontal

arrow lines in (b) span parametric resonances predicted by ARP. Parameters: L ¼ 0:55; E ¼ 195� 109; g ¼ 9:82;
rA ¼ 6:1410� 10�3; EI ¼ 9:5720� 103; rAc ¼ 8� 10�3; Oa ¼ 300; n ¼ 6:
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frequency response in Fig. 5. The agreement between ARP theory and experiment is generally
good, at least for acceleration levels that are not very high (700m/s2 is the maximum capacity of
the shaker). The tip lift increases almost quadratically with acceleration, as can be explained by
considering the change in stiffness predicted by the ARP: The increase in apparent linear stiffness
is Dx2 (cf. Eq. (32)), which according to Eq. (33) grows with the square of a when resonance
effects (second term in parentheses in Eq. (33)) can be neglected. Now a ¼ acceleration=O; where
for each curve in Fig. 6 the frequency O is kept constant; hence the stiffness and thus the tip lift
grows approximately with the square of the acceleration.

4.3. Example closure

In conclusion, the simple ARP provides good predictions for the tip lift and tip amplitude of the
experimental string for a wide range of excitation parameters—except at sharp external or
parametric resonance, where the theory is explicitly not valid (and not relevant). The SRP gives
predictions that are identical to those of the ARP outside sharp resonance, and further gives good
predictions at resonance; however this method is purely numerical and thus yields little qualitative
insight. The predictions of the NRP does not match those of the ARP and the SRP and the
experimental measurements, except at far-from-resonant conditions where the accuracy is fair;
however, the ARP does provide some qualitative insight on how the change in apparent stiffness
enters into the partial differential equation of motion. Next a generalized class of elastic systems
with HF excitation is considered, and ARP used to set up correspondingly general predictions for
the change in apparent stiffness.

Fig. 6. Tip lift of the string as a function of input acceleration at four different frequencies. Curves: ARP theory;

symbol markers: experimental measurements. System parameters as for Fig. 5.
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5. Generalized system and predictions

Consider a class of continuous systems subjected to HF excitation, broad enough to cover
many applications of interest, yet sufficiently specific to yield interpretable results:

utt þ Lc½ut
 þ L0½u
 þ O
XN

k¼1

L1k½u
sinðmkOt þ ckÞ

¼ f0ðx; tÞ þ Of1ðx; tÞsinðmOt þ cÞ; ð38Þ

where u ¼ uðx; tÞ describes a scalar displacement component of a continuous structure at spatial
position xAD where D is a bounded region, Lc; L0; and L1k are linear spatial differential operators
describing the damping, stiffness, and spatial component of the HF excitation, respectively, Ob1
is the fundamental excitation frequency, mk and m are integers, ck and c are phasings of the HF
excitation, f0 and f1 are external distributed forces, with f0 changing slowly as compared to the
base period 2p=O of the HF excitation, and the term with f1 containing rapidly fluctuating
components. In general, subscript 1 denotes functions and operators related to terms with explicit
HF variation, while subscript 0 denotes quantities without such variations. The two HF excitation
terms are written with O as a factor, to indicate that these are assumed to be ‘‘strong’’. Specifying
the HF excitation in terms of harmonic functions implies that the following results will be much
more transparent than if generalized time functions were used. Still, quite general time functions
can be described for the parametric excitation in Eq. (38), by using the sum to describe a Fourier
expansion of the time function. The system description is completed by specifying initial
conditions uðx; 0Þ and utðx; 0Þ; and linear homogeneous boundary conditions Br½u
 ¼ 0; r ¼
1;y; 2q for xAqDr; where qDrDqD denotes parts of the boundary of D; q is the order of Eq. (38),
and Br contain spatial derivatives of order 0 through q � 1: The extension to the multivariable
case can be performed by replacing the scalar functions u; f0; and f1 with suitable vectors, and is
thus trivial.
The linear eigenvalue problem (e.g., Refs. [3,26,29,30]) associated with the above system is

L0½j
 ¼ o2j; xAD;

Br½j
 ¼ 0; xAqDr; ð39Þ

which is assumed to be self-adjoint, with eigenvalues o2
i and corresponding normalized

eigenvectors jiðxÞ satisfying the following orthogonality relations:Z
D

jijj dD ¼ dij ;

Z
D

jiL 0½jj
 dD ¼ o2
i dij; i; j ¼ 1; 2;y: ð40Þ

The excitation of the system is assumed to be small in displacement amplitude and high in
frequency, and the motion u to consist of small, rapidly oscillating components superimposed on
slowly changing components. Next approximate equations governing the slow or average
components of motion are set up, from which apparent changes in stiffness and related quantities
can be predicted.
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5.1. The generalized no-resonance prediction (GNRP)

This generalized version of the NRP is useful when O is large and far away from any
resonances. The main results will be in terms of averaged terms in the original equation of motion,
representing the integrated effect of the HF excitation. Repeating the steps described in detail in
Section 3.1 for the string system, let

uðx; tÞ ¼ u0ðx; tÞ þ O�1u1ðx; t; tÞ; t � Ot; ð41Þ

where u0 holds the slow motions, and O�1u1 is the rapidly oscillating overlay, 2p-periodic in the
fast time t with a zero fast-time average, /u1S ¼ 0: Then the equation for the slow motions u0

and the fast motions u1 becomes, respectively:

u0tt þ Lc½u0t
 þ L0½u0
 þ
XN

k¼1

/L1k½u1
sinðmktþ ckÞS ¼ f0ðx; tÞ; ð42Þ

u1tt ¼ �
XN

k¼1

L 1k½u0
sinðmktþ ckÞ þ f1ðx; tÞsinðmtþ cÞ þOðO�1Þ: ð43Þ

A first-order solution for u1; valid for Ob1 and neglecting resonance effects, is readily obtained by
integrating Eq. (43) (recalling that u0 does not depend on t):

u1 ¼
XN

k¼1

L1k½u0
m�2
k sinðmktþ ckÞ � f1ðx; tÞm�2 sinðmtþ cÞ þOðO�1Þ: ð44Þ

Inserting this into Eq. (42) and evaluating the averaging term yields the final averaged system:

u0tt þ Lc½u0t
 þ %L0½u0
 ¼ %f0ðx; tÞ þOðO�1Þ; ð45Þ

where

%L0 � L0 þ
1

2

XN

k;j¼1

m�2
j dmk mj

cosðck � cjÞL1kL1j;

%f0 � f0 � 1
2
m�2

XN

k¼1

L1k½f1
dmk m cosðc� ckÞ ð46Þ

and where it has been used that /sinðitþ ciÞsinðjtþ cjÞS ¼ 1
2
dij cosðci � cjÞ for i; j ¼ 1; 2; :::; and

it should be recalled that some of the mk’s can be equal.
Thus the effect of the HF excitation, on the average, is to change the stiffness operator L0; and

change the slow external forces f0: To observers (or measuring instruments) that do not notice (or
low-pass filters) the small overlay of HF displacements, it will appear as if the stiffness and the
slow forcing has changed. It appears the change in stiffness is independent of the external HF
excitation f1; whereas the change in slow forcing occurs only when external and parametric HF
excitation are both present (f1a0 and L1a0).
A change in effective stiffness in turn changes related quantities, such as natural frequencies. To

find the apparent natural frequencies %oi in the presence of HF excitation one should solve the
eigenvalue problem (39) using %L0 in place of L0: Knowing the eigenvalues o2

i and eigenfunctions
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ji for the unexcited system, an estimate for the change in natural frequencies can be obtained by
pre-multiplying the eigenvalue problem %L0 %ji ¼ %o2

i %ji by %ji, integrate over the domain of the
system, assume the change in eigenfunction is negligible, and find

%o2
i ¼

Z
D
%ji %L0½ %ji
 dDE

Z
D

ji
%L0½ji
 dD

¼ o2
i þ

1
2

XN

k;j¼1

m�2
j dmk mj

cosðck � cjÞ
Z

D

jiL1kL1j½ji
 dD: ð47Þ

Many theorems and methods for continuous systems rely on the self-adjointness of the relevant
eigenvalue problems. It appears from the assumed self-adjointness of L0 and the definition of %L0

in Eq. (46), that the eigenvalue problem for %L0 is self-adjoint if
R
D uL1iL1j½v
 dD ¼

R
D vL1iL1j½u
 dD

for i; j ¼ 1; 2;y; and for any two test functions uðxÞ and vðxÞ satisfying the boundary conditions.

5.2. The GARP

This generalized version of the ARP is useful when O is large, and not at sharp external or
parametrical resonance with the system; the predictions will be in terms of mode shapes and
natural frequencies. Proceeding as described in detail for the string system in Section 3.1, consider
the Galerkin discretized model of the general system (38), i.e., let

uðx; tÞ ¼ vTðtÞuðxÞ; ð48Þ

where the vector u holds the eigenfunctions jiðxÞ; i ¼ 1; n; that are solutions to the eigenvalue
problem (39)–(40), and the vector v ¼ vðtÞ holds the modal coefficients vi; i ¼ 1; n; that are
solutions to the following linear system of ordinary differential equations:

vtt þ cvt þ x2vþ O
XN

k¼1

ckv sinðmkOt þ ckÞ ¼ p0ðtÞ þ Op1ðtÞsinðmOt þ cÞ; ð49Þ

where the components of the matrices c; x2; ck; and the vectors p0; p1 are, respectively:

cij ¼
Z

D

jjLc½ji
 dD; o2
ij ¼ dijo2

i ; gkðijÞ ¼
Z

D

jjL 1k½ji
 dD;

p0iðtÞ ¼
Z

D

f0ðx; tÞji dD; p1iðtÞ ¼
Z

D

f1ðx; tÞji dD; i; j ¼ 1; n; k ¼ 1;N: ð50Þ

External resonances occur for this system in two cases: (1) when p1a0 and OEoi=m; and (2)
when p0 has a non-zero (long-term) average and OEoi=mk; i ¼ 1; n; k ¼ 1;N:
Parametric resonances also occurs in two cases: (1) when gkðijÞgkðjiÞ > 0 and OEðoi þ ojÞ=mk;

i; j ¼ 1; n; for at least one k ¼ 1;N; and (2) when gkðijÞgkðjiÞo0 and OEðoi � ojÞ=mk for at least one
k: For vanishing damping, the width of the resonant regions are given by the condition gkðijÞgkðjiÞ >
oiojðmkO2ðoi � ojÞÞ

2 in case (1), and by gkðijÞgkðjiÞo2oiojðmkO2ðoi � ojÞÞ
2 in case (2); see Ref.

[27] (Section 5.4) for a detailed treatment of these resonances, and for higher-order
approximations and consideration to damping.
To solve Eq. (49) approximately for Ob1; motions are split into slow and fast components:

v ¼ v0ðtÞ þ O�1v1ðt; tÞ; /v1S ¼ 0; t ¼ Ot; ð51Þ
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where the equations for the slow motions v0 and the fast motions v1 becomes, respectively:

v0tt þ cv0t þ x2v0 þ
XN

k¼1

ck/v1 sinðmktþ ckÞS ¼ p0ðtÞ; ð52Þ

v1tt þ
XN

k¼1

ckv0 sinðmktþ ckÞ � p1ðtÞsinðmtþ cÞ þ O�2½v1tt þ cv1t þ x2v1


þ O�1 2v1tt þ cv1t þ
XN

k¼1

ckðv1 sinðmktþ ckÞ �/v1 sinðmktþ ckÞSÞ

" #
¼ 0: ð53Þ

For the case of interest, where resonant effects are significant but not dominating, the term
O�2x2v1 in Eq. (53) is comparable in magnitude to the dominating first terms, so the equation of
fast motion can be written as

v1tt þ O�2x2v1 ¼ �
XN

k¼1

ckv0 sinðmktþ ckÞ þ p1ðtÞsinðmtþ cÞ þOðO�1Þ ð54Þ

with stationary solution (valid when O is away from sharp resonance):

v1 ¼
XN

k¼1

ðm2
kI� O�2x2Þ�1ckv0 sinðmktþ ckÞ

� ðm2I� O�2x2Þ�1p1ðtÞsinðmtþ cÞ þOðO�1Þ: ð55Þ

Inserting into Eq. (52) and evaluating the average, the equation for the slow motions becomes

v0tt þ cv0t þ ðx2 þ Dx2Þv0 ¼ p0ðtÞ þ Dp0ðtÞ; ð56Þ

where Dx2 denotes the apparent change in stiffness:

Dx2 � 1
2

XN

k;j¼1

ckðm
2
j I� O�2x2Þ�1cjdmkmj

cosðck � cjÞ ð57Þ

and Dp0ðtÞ denotes an apparent change in static load:

Dp0ðtÞ �
1
2

XN

k¼1

ckðm
2I� O�2x2Þ�1p1ðtÞdmkm cosðck � cÞ: ð58Þ

Expressions (56)–(58) provides straightforward predictions of apparent changes in stiffness and
static loading, and facilitates predictions of related quantities such as natural frequencies,
buckling loads, and static equilibriums—provided the frequency of excitation O is high and not in
sharp external or parametric resonance with the system. Below, application of the GNRP and the
GARP is illustrated in the form of two brief examples.

5.3. Brief example 1: clamped string with HF base excitation

Reconsider the string problem described in Section 2. The equation of motion (1) for the
corresponding beam model is of the general form (38), with N ¼ 1; Lc ¼ c; L0 ¼ o2

0l
4ðÞxxxx;
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L11 ¼ 2aððlFxÞðÞxÞx; m1 ¼ 1; f0 ¼ 2g; c1 ¼ f1 ¼ 0; and boundary conditions of the required
type.
To predict the response under far-from-resonance conditions the GNRP is employed, and

Eqs. (45) and (46) used to readily produce the approximation for the equation of slow motions
already derived in Section 3.1 using the NRP. This equation provides the basis for prediction of
changes in stiffness and related quantities.
Weakly resonant behavior is taking into account by using the GARP expressions (56)–(58) to

compute equations governing the slow component of the modal coefficients vðtÞ; the results
becomes those already presented in Section 3.3 using ARP. They can be used directly for
predicting apparent changes in stiffness and related quantities, or along with Eq. (48) (with u0

substituted for u) to predict the slow component u0ðx; tÞ of the displacement field.

5.4. Brief example 2: square membrane with in-plane HF excitation

Next, the free transverse vibrations of a square membrane, stretched in the (x; y) plane are
predicted. The membrane has density r and thickness h; and is clamped along the boundary lines
x ¼ 0 and y ¼ 0; while held with tension N0 per unit length along the two other boundary lines
x ¼ l and y ¼ l: The arrangement is shaken in the plane, so that points on the clamped boundary
lines are translated at high angular frequency O along circular paths of small radius O�1a; Ob1;
a ¼ O(1). Assuming small out-of-plane vibrations uðx; y; tÞ; so that in-plane deformations can be
ignored, the boundary tension N0 can be held approximately constant and the equation of
transverse motion becomes

utt � ððc20 þ ðl � xÞOa sinðOtÞÞuxÞx � ððc20 þ ðl � xÞOa cosðOtÞÞuyÞy ¼ 0; ð59Þ

where c20 � N0=rh is a squared wave speed, and the boundary conditions are uð0; y; tÞ ¼ uðl; y; tÞ ¼
uðx; 0; tÞ ¼ uðx; l; tÞ ¼ 0: This equation is of the general form (38) with N ¼ 2; Lc ¼ 0; L0 ¼
�c20ððÞxx þ ðÞyyÞ; L11 ¼ 2aððlFxÞðÞxÞx; L12 ¼ 2aððlFyÞðÞyÞy; m1 ¼ m2 ¼ 1; c1 ¼ 0; c2 ¼ p=2; and
f0 ¼ f1 ¼ 0:
The slow component u0 of the far-from-resonance response is given by the GNRP, for which

application of Eqs. (45)and (46) gives

u0tt þ %L0½u0
 ¼ OðO�1Þ; Ob1; ð60Þ

where the effective stiffness operator %L0 can be written as

%L0 ¼ L0 þ 1
2
ðL2

11 þ L2
12Þ

¼ �c20ðð Þxx þ ð ÞyyÞ þ
1
2
a2½ððl � xÞ2ð ÞxxÞxx þ ððl � yÞ2ð ÞyyÞyy
: ð61Þ

As appears, in the presence of HF excitation (aa0) the membrane exhibits bending-like
stiffness (fourth order terms) in addition to the stiffness already provided by stretching (second
order terms). This in turn implies, e.g., that more boundary conditions are required to solve for u0;
and that travelling waves will appear dispersive instead of non-dispersive.
The GARP is applicable to illustrate how the stiffness might be affected when resonances

cannot be ignored, as will typically be the case. For brevity it is assumed here that 05o1oO5o2;
so that only the first resonance need to be taken into account, and that only the change in o1 is to
be predicted. Then Eqs. (56)–(58) can be employed with n ¼ 1; giving an equation for the slow
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component v0 of the fundamental modal coefficient:

v0tt þ ðo2
1 þ Do2

1Þv0 ¼ 0; Do2
1 �

1
2
ð1� ðo1=OÞ

2Þ�1ðg21 þ g22Þ; ð62Þ

where o1 ¼
ffiffiffi
2

p
c0p=l is the fundamental natural frequency for the unexcited membrane, and Do1

is the predicted change in this natural frequency due to HF excitation. Using Eq. (50) to calculate
g1;2; and inserting the normalized fundamental eigenfunction (first solution of L0½j
 ¼ o2j with
boundary conditions), j1ðx; yÞ ¼ 2l�1 sinðpx=lÞsinðpy=lÞ; one finds g1 ¼ g2 ¼ p2a=ð2lÞ and thus

Do1 ¼ ð1� ðo1=OÞ
2Þ�1=2 p2a

2l

� �
ð63Þ

which is valid for 05o1oO5o2 and O away from any parametric resonances. Whether this
change is of any practical significance appears to depend on two factors: The relative strength of
the HF excitation a=l; and the closeness of O to o1:

6. Summary and conclusions

A laboratory experiment was set up for demonstrating and measuring the stiffening effect of
high-frequency excitation for a clamped–free horizontal string. A mathematical model was
proposed for this system, and analyzed using a hierarchy of three approximating theories. One of
these (the ARP), proved capable of predicting the vertical string lift due to stiffening in terms of
simple expressions, with results agreeing very well with experimental measurements for a wide
range of conditions—except at sharp resonance. Since the stiffening effect has no meaning or
relevance at sharp resonance anyway, this theory seems the most adequate for typical applications
characterized by high modal density and light damping.
Another theory tested (NRP) provides some insight into the stiffening effect of HF excitation,

which here shows up in the partial differential equation of motion as an equivalent distributed
bending stiffness. However, ignoring all resonant effects, this theory seriously fails in the
quantitative prediction of experimental observations, even for excitation frequencies correspond-
ing to the flattest parts of the frequency response in-between resonances. This theory is applicable
only for systems with very low modal density or heavy damping.
Thus resonant effects generally needs to be taken into account, as in the ARP and the

generalized version GARP, if useful predictions are in need—even if the high-frequency excitation
is not close to resonant to the system of concern. The few other studies dealing with high-
frequency effects for continuous systems ignore this, and probably therefore fail to produce
predictions in quantitative agreement with experiments. Also, the many studies concerning the
general response of continuous elastic systems to periodic excitation seem to ignore the (quasi-)
static stiffening effect that may occur with strong high-frequency excitation. This present study
takes both into account—the stiffening and the resonance effect—to adequately explain a
laboratory experiment where they are both manifest.
The string system is believed to be representative, in many respects, of the way other continuous

elastic systems may change apparent stiffness in the presence of HF excitation. Thus, with
experimental support for the specific system lending confidence to the approach of analysis,
expressions for predicting the stiffening effect for a more general class of continuous systems in
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linear differential operator form are also provided. An example usage of this is given, predicting
the change in natural frequencies for a plane square membrane subjected to plane HF excitation.
Though the stiffening effect might be utilized for technical purposes or devices, it is first and

foremost to be considered as a phenomenon that should be taken into account when predicting
performance and safety measures such as stiffness, resonance frequencies, and critical loads for
structures operating in strongly vibrating environments.
No attempt was made to include consideration to non-linearities for the string system of this

study, since good predictive power was achieved with a linear model. For other systems non-
linearities may significantly affect the influence of HF excitation, as shown in Ref. [5] for a general
class of discrete systems; for example, non-linearities may contribute to raise the apparent linear
stiffness. Hence it would be relevant to extent the present general system and analysis with non-
linear operator terms (e.g., quadratic or cubic or quite general), and exemplify for specific non-
linear systems, e.g., a stretched (rubber) string or plate clamped along the full boundary, and
subjected to strong HF excitation.
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